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Abstract

This paper examines the motions of reference systems linked to deformable bodies under simultaneously
vibration and large translations and rotations. These motions depend on the particular type of linkage
between the moving reference system and the deformable body, which is defined by the so-called reference

conditions. When using the Rayleigh–Ritz method, the reference conditions also dictate the boundary
conditions to be fulfilled by the shape functions used to describe the body’s elasticity. This paper analyses
three different types of reference conditions, namely: free linkage, rigid linkage and two-point linkage. It is
shown that, moving reference frames only evolve at a constant velocity in the absence of external forces
when the free linkage is used. The reference velocities for systems with a free linkage are designated rigid

body equivalent velocities for the deformable body here. Such velocities can also be calculated under other
types of reference conditions and are usually functions of the elastic and reference co-ordinates, and also of
their derivatives. Rigid body equivalent velocities are useful for purposes such as estimating the trajectory
of deformable bodies moving freely in space without the need to examine the deformations they undergo.
Also, their calculation is required with a view to determining the kinematic restitution coefficient for
deformable body collisions, which is dealt within Part II of this series.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

The dynamics of deformable bodies under large rotations and translations can be analyzed in
terms of absolute co-ordinates [1–3] or by using a mixed set of reference and relative elastic co-
ordinates [4–6]. When using absolute co-ordinates, they are referred to a single inertial reference
system. This method is only appropriate when the bodies concerned undergo large deformations;
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with small deformations, the floating frame of reference approach, which uses the latter above-
mentioned co-ordinate system, is more effective.
In the floating frame of reference approach, each deformable body is assigned a local co-ordinate

system. A series of Cartesian co-ordinates and orientation co-ordinates or parameters is used to
indicate the origins of the local co-ordinate systems and their orientations, respectively, with
respect to a global co-ordinate system (inertial axes). The body’s deformation is described by a set
of elastic co-ordinates referred to the associated local system. Deformations in the body can be
described by using various spatial discretization approaches including the Rayleigh–Ritz method
and the finite element method. In both cases, the body’s deformation at any time is assumed to be
a linear combination of a series of shape functions the coefficients of which are the elastic co-
ordinates. The shape functions used for this purpose should fulfill specific boundary conditions
that arise from the type of linkage between the local co-ordinate system and the deformable body.
The reference conditions specify the type of linkage and become boundary conditions that must
be obeyed by the shape functions at the linkage point(s).
The best way of selecting the reference conditions and hence their associated shape functions

for describing the deformation has been examined by many authors. Agrawal [7] recommends
using the mean axis conditions as reference in order to minimize dynamic coupling between the
elastic and reference co-ordinates. The mean axis conditions minimize the kinetic energy
associated to the elastic co-ordinates. Also, in the absence of forces and moments acting on the
system, such conditions imply that the total momentum and angular momentum due to the
deformation are always zero. The modes of vibration of free bodies in space are appropriate shape
functions for the mean axis conditions. Kim and Haug [8] proposed the use of local reference
systems rigidly attached to a point in the deformable body and of modes of vibration combined
with static modes of deformation to describe the deformation. Static modes of vibration, which
they called constraint modes, are obtained by applying unit forces or torques to specific nodes
selected using finite element models. Meirovitch and Kwak [9] showed that using the method of
floating reference systems with a single family of admissible shape functions results in poor
convergence characteristics because a single family of functions does not allow one to satisfy the
dynamic boundary conditions of the deformable body. They used quasi-comparison functions
(viz. combinations of families of shape functions obtained under different boundary conditions in
such a way that a linear combination would meet any dynamic boundary condition) to circumvent
this shortcoming. Schwertassek et al. [10,11] classified local reference systems into tangent frames,
chord frames and mean or Buckens frames. Measured deformations decrease in the sequence
tangent frames > chord frames > mean frames. Because the method of floating reference systems
is restricted to small deformations, mean frames extend their scope to the greatest possible extent.
However, previous authors have shown that the modes of deformation of the free body in space
used with this type of frame are inappropriate for estimating stress as they usually fail to fulfill the
dynamic boundary conditions. For this reason, they proposed using static modes in addition to
dynamic modes as shape functions to describe deformations.
This paper analyses the dynamics of planar motion in elastic beams by use of the floating frame

of reference approach. Specifically, it examines the relationship between the reference co-ordinates
and the resulting motions in the equivalent rigid bodies. To this end, local axes with a free linkage
to the deformable body (mean axes), axes rigidly linked to a point in the deformable body
(tangent axes) and axes supported on two points of the body (chord axes) were used. The
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following section provides a kinematic description and the dynamic equations derived using the
method of floating reference systems. Section 3 analyses the different inertial terms present in the
equations depending on the particular reference conditions and the point of linkage to the origin
of the floating reference system. Section 4 defines the rigid body equivalent velocities for
deformable bodies. Section 5 describes the application of the previous results and demonstrates
their usefulness with the problem of the throw and free flight of a javelin. Finally, Section 6
summarizes the most interesting aspects of the study and its most salient conclusions.

2. Kinematic description

In the proposed formulation, the position of a point P in a deformable body i with respect to
the global co-ordinate system depicted in Fig. 1 is given by

Rp ¼Rþ A %rP þ %rPf

� �
;

%rPf ¼W %rP
� �

qf ; ð1Þ

where R is the position vector for the origin of the local co-ordinate system with respect to the
global system, A the matrix of rotation from the local co-ordinate system to the global one, which
depends on angle y; %rp the position of P with respect to the local co-ordinate system when the body
is undeformed, %rPf the elastic displacement vector; w a matrix containing the shape functions for
elastic displacements; and qf the elastic co-ordinate vector.
In the planar motion, the equations of motion for the deformable body are

M qð Þ.qþ Kq ¼Qv þQext;

q ¼

R

y

qf

2
64

3
75; M ¼

mRR mRy mRf

myy myf

Sym mff

2
64

3
75; K ¼

0 0 0

0 0

Sym Kff

2
64

3
75; Qv ¼

Qvð ÞR
Qvð Þy
Qvð Þf

2
64

3
75; ð2Þ
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Fig. 1. Position of a point P in a deformable body.
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where vector q contains co-ordinates R, y and qf ;M is the mass matrix (co-ordinate-dependent), K
is stiffness matrix, Qv the quadratic velocity vector and Qext the vector of generalized external
forces acting on the body. Damping forces are assumed to be zero.

3. Analysis of inertial terms

The mass matrix is given by [4]

M ¼

mI Ay m%rG þ
R

V
rWdVqf

h i
A
R

V
rWdV

I0 þ qTf
R

V
rWTWdVqf þ 2

R
V
r%rTPWdVqf

R
V
r%rTP*IWdV þ qTf

R
V
rWT*IWdV

Sym
R

V
rWTWdV

2
6664

3
7775; ð3Þ

where subscripts G and O denote the centre of gravity of the body and the origin of the local co-
ordinate system, respectively; Ay is the partial derivative of the rotation matrix, A, with respect to
angle y; I the identity matrix and *I is defined as

*I ¼
0 1

�1 0

" #
: ð4Þ

The quadratic velocity vector is given by [4]

Qv ¼

A m%rG þ
R

V
rWdVqf

h i
’y2 � 2’yAy

R
V
rWdV ’qf

h i
�2’y’qTf

R
V
rWTWdVqf þ

R
V
rWT%rPdV

h i
’y2

R
V
rWTWdVqf þ

R
V
r%rTPWdV

h i
þ 2’y

R
V
rWT*IWdV ’qf

2
66664

3
77775: ð5Þ

When the modes of vibration of the free flexible body in space wf (where superscript f denotes
free boundary conditions) are used as shape functions, some terms in the previous equations
cancel. This type of shape function can be used provided a free linkage between the local co-
ordinate system and the flexible body is adopted as reference conditions. In this type of linkage,
the origin of the local co-ordinate system is linked to no material point of the body; also, elastic
stress on the boundary of the body is always zero as this is a boundary condition imposed on the
shape functions. As a rule, the momentum, pf ; and the net angular momentum with respect to the
origin of the local co-ordinate system LfO due to elastic motions are obtained from the following
expression:

pf ¼
Z

V

rWdV ’qf ; LfO ¼
Z

V

r%rTP*IWdV þ qTf

Z
V

rWT*IWdVqf

� �
’qf : ð6Þ

When using modes of vibration of a free body in space, these quantities should be zero as the
body is assumed to be under no external forces or moments. Consequently,Z

V

rWf dV ¼ 0;

Z
V

r%rTP*IW
f
dV þ qTf

Z
V

rWfT*IW
f
dVqf ¼ 0: ð7Þ
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If the elastic body is a beam, then Z
V

rWfT*IW
f
dV ¼ 0 ð8Þ

because longitudinal and transverse elastic displacements are assumed to be uncoupled.
Therefore, from Eq. (7) it follows that Z

V

r%rTP*IW
f
dV ¼ 0: ð9Þ

Consequently, with this type of shape function, the mass matrix cross-terms between the elastic
and reference co-ordinates cancel as mRf ¼ myf ¼ 0; so translations in the local co-ordinate
system are completely uncoupled with elastic motions. However, the orientation co-ordinate y is
not uncoupled with elastic motions as the inertial quadratic velocity terms, Qvð Þy and Qvð Þf ; are
non-zero and depend on ’y; qf and ’qf :
If, in addition to using shape functions such as wf ; points O and G are made to coincide in the

undeformed position (i.e., if the centre of gravity of the elastic body is used as the origin of the
local co-ordinate system), then translations and rotations in the system are also uncoupled. Under
these conditions, the mass matrix and the quadratic velocity vector are given by

M ¼

mI 0 0

IG þ qTf
R

V
rWfTWf dVqf þ 2

R
V
r%rTPWf dVqf 0

Sym
R

V
rWfTWfdV

2
664

3
775; ð10Þ

Qv ¼

0

�2’y’qTf
R

V
rWfTWf dVqf þ

R
V
rWfT%rPdV

h i
’y2

R
V
rWfTWf dVqf þ

R
V
r%rTPWfdV

h i
þ 2’y

R
V
rWfT*IW

f
dV ’qf

2
6664

3
7775; ð11Þ

where IG is the moment of inertia with respect to point G in the undeformed configuration.

4. Rigid body equivalent velocity

In solving some problems of practical interest it is important to know the rigid body equivalent
motions of flexible bodies. As shown above, rigid body translations can be directly calculated by
using the above-described local systems and shape functions. However, alternative types of local
systems and shape functions also allow such rigid body equivalent motions to be determined,
albeit in a more elaborate manner. Rigid body equivalent velocities can usually be calculated by
assuming the elastic body concerned to be a system consisting of infinite particles. In this way, the
rigid body equivalent velocities, VRB, can be taken to be the total momentum, p, divided into the
body mass:

p ¼ mRR
’RþmRy ’yþmRf ’qf ;

VRB ¼
p

m
: ð12Þ
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If a wf shape function is used, then

VRB ¼ ’R: ð13Þ

Similarly, the equivalent angular velocity of a deformable body, oRB; can be obtained by
calculating the angular momentum with respect to its centre of gravity and dividing it by its
moment of inertia. The angular momentum for the deformable body with respect to the origin of
the locales axes, O, can be obtained from

LO ¼ myR
’Rþmyy ’yþmyf ’qf : ð14Þ

Also, the angular momentum with respect to the centre of gravity, G, of the deformable body
can be obtained by adding L0 to the vector product of the momentum, p, by the vector joining O

and G [12], which can be expressed in matrix form as

LG ¼LO þ pT*IA %rG þ %rGf

� �
;

%rGf ¼
1

m

Z
V

rWdVqf : ð15Þ

The resulting expression for LG is rather complex but simplifies to the following when O and G
coincide in the undeformed position:

LG ¼ myy �
1

m
qTf

Z
V

rWTdV

Z
V

rWdVqf

� �
’yþ myf �

1

m
qTf

Z
V

rWTdV *I

Z
V

rWdV

� �
’qf : ð16Þ

As can be seen, LG is independent of R. This is the case even when O and G do not coincide. The
rigid body equivalent angular velocity of the deformable body can thus be obtained from

oRB ¼
LG

IG

: ð17Þ

If a shape function of the wf type is used, and O and G are made to coincide in the undeformed
position, then Eq. (17) reduces to

oRB ¼
myy ’y

IG

¼
IG þ qTf

R
V
rWTWdVqf þ 2

R
V
r%rTPWdVqf

IG

’y: ð18Þ

Therefore, unlike the reference velocities ’R given by Eq. (13), the derivative of y with respect to
time is not constant with the proposed reference conditions and shape functions —not even in the
absence of external torques. This is the result of myy not being constant and of the fact that, as
shown below, the product myyy should remain constant. The terms

qTf

Z
V

rWTWdVqf þ 2

Z
V

r%rTPWdVqf ; ð19Þ

that appear in Eq. (18), represent the change in moment of inertia undergone by the deformable
body by effect of the deformation. With small deformations, such terms are negligible relative to
IG; under these conditions—which are those used in the method of floating reference systems

oRBE’y: ð20Þ

In summary, using free linkages between the local co-ordinate system and the deformable body,
making O and G coincide in the undeformed position and using the modes of vibration of the free
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body as shape functions results in the translations of the local co-ordinate system coinciding with
the rigid body equivalent motions of the deformable body. In addition, the rotations in the
reference systems roughly coincide with the rigid body equivalent rotations of the deformable
body. With other reference conditions or shape functions, these equivalent motions are
determined by using Eqs. (12) and (18).

5. Analysis of the throw and flight of a javelin

The implications of using different reference conditions and the usefulness of the rigid body
equivalent velocities are analyzed in this section by examining the throw and free flight of a
deformable javelin. The following three types of analysis are performed for this purpose:

1. With mean frame reference conditions (free linkage) and the modes of vibration for a free beam
as shape functions.

2. With tangent frame reference conditions (fixed linkage) and the modes of vibration for a
cantilever beam as shape functions.

3. With chord frame reference conditions (two-points linkage) and the modes of vibration for a
simply supported beam as shape functions.

The different floating axes used are shown in Fig. 2. Initially, all axes coincided with the central
section of the javelin. Also, the javelin was assumed to undergo transverse deformation but
negligible axial deformation. The modes of vibration were obtained as continuous functions —no
finite elements were used but the results would have been comparable. The javelin was assumed to
be an elastic beam of uniform cross-section; also, the air resistance was not modelled. In
summary, the javelin was assumed to be a beam of length l = 2m, mass m = 1kg, sectional
inertia I = 3 � 10�8 m4 and Young’s modulus 5GPa. A value of 9.81m/s2 was adopted for the
acceleration due to gravity.
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In order to simulate the javelin, the trajectory and orientation of the central section were
subjected to a series of kinematic constraints for over a preset period. In this way, the action of the
thrower’s hand was represented by assuming that the javelin was grasped at its centre of gravity.
The constraints on the motion of the central section and its orientation were applied over a period
tf = 1s. The constraint equations used were

RS
X tð Þ ¼ RX � sin yð ÞW x ¼ 0ð Þqf ¼ 1

2
at2;

RS
Y tð Þ ¼ RY þ cos yð ÞW x ¼ 0ð Þqf ¼ �c

a

2

� �2

t4 þ b
2
at2; 0ototf ;

yS tð Þ ¼ yþ
1

l

dW x ¼ 0ð Þ
dx

qf ¼ a tan �cat2 þ b
� �

ð21Þ

where superscript S denotes the central section of the javelin; xA �0:5; 0:5½ � is the non-dimensional
variable along the beam; and a, m and k are three parameters that define the parabolic path
followed by the hand. Such parameters were assigned the values a = 15m/s2, b = 1.4 and c =
0.035m�1.
If the javelin were a rigid body, from the kinematic solution to the skew throw, the evolution of

the velocity components of the centre of gravity, the angular velocity and the trajectory of the
centre of gravity would be given by

VX tð Þ ¼ VX0;VY tð Þ ¼ VY0 � gt;o tð Þ ¼ o0;

Y ¼
1

VX0
VY0 �

g

2VX0
X

� �
X ; ð22Þ

where subscript 0 denotes velocities at the end of the throw (i.e., while the constraints imposed
through Eq. (21) applied). As suggested by Eq. (13), the evolution of the derivatives at the origin
of the mean axes (solution 1) coincides with those resulting from Eq. (22). Such is also the case
with the trajectory of the origin. As predicted by Eq. (20), the evolution of the derivative of the
orientation of the mean axes coincides roughly with that resulting from Eq. (22). With tangent or
chord frames (solution 2 and 3, respectively), however, the derivatives of the position of the origin
of the reference frames, their trajectories and the derivatives of their orientation co-ordinates do
not coincide with those provided by Eq. (22). With tangent or chord frames, the rigid body
equivalent velocities can be obtained from Eqs. (12) and (18). These quantities, which are
functions of the elastic and reference co-ordinates, coincide with the values yielded by Eq. (22).
This example illustrates one case where determining the rigid body equivalent velocities is of

special interest. Once known, they can be used in Eq. (22) to determine the maximum height
reached or distance travelled by the javelin during its free flight following release by the thrower.
These data can be obtained without the need to analyze the javelin deformation during the free
flight.
The throw and free flight of the javelin were simulated using the three above-described types of

analysis and six elastic co-ordinates for all solutions. The modes of vibration used with each of the
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three solutions examined were as follows [13]:

cf
i xð Þ ¼ sin mf

i xþ 0:5ð Þ
� �

þ sinh mf
i xþ 0:5ð Þ

� �

�
cosmf

i þ coshmf
i

sinmf
i þ sinhmf

i

cos mf
i xþ 0:5ð Þ

� �
þ cosh mf

i xþ 0:5ð Þ
� �� �

;

cc
i xð Þ ¼ sin mc

i xþ 0:5ð Þ
� �

� sinh mc
i xþ 0:5ð Þ

� �
þ

cosmc
i þ coshmc

i

sinmc
i � sinhmc

i

cos mc
i xþ 0:5ð Þ

� �
� cosh mc

i xþ 0:5ð Þ
� �� �

;

cs
i xð Þ ¼ sin ip xþ 0:5ð Þð Þ; ð23Þ

where superscripts f, c and s denote a free beam, a cantilever beam and a simply supported beam,
respectively. With the former two sets of modes, constants mi were obtained from the following
non-linear algebraic equations:

cosmf
i coshm

f
i ¼ 1;

cosmc
i coshm

c
i ¼ �1:

ð24Þ

The equations of motion were numerically integrated using the stabilization method of
Baumgarte [5,6] to ensure fulfillment of the constraint equations; a Runge–Kutta single-step
explicit formula was also employed [14]. The equations were solved using Matlab software.
Fig. 3 shows a portion of the trajectory of the origin of the different local frames in the zone

near the maximum height of the path. Fig. 4 shows the X component of the velocity of the origin
of the different local frames. Only with free frames did such a velocity remain constant; with the
other two types, there were deviations from the mean velocity. Fig. 5 shows the Y component of
the velocity of the origin of the different local frames. Similarly, only with free frames was a
uniformly (negatively) accelerated motion represented. Fig. 6 shows the angular velocities for the
different local frames. Although not strictly constant with free frames (as shown by using
Eq. (18)), this quantity only changed in the fourth significant place during the simulation.
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Although the translation velocities provided by Eqs. (2) differed little from the rigid body values,
the angular velocities in solutions 2 and 3 exhibited substantial differences (see Figs. 4–6).
It should be noted that the velocities for solutions 2 and 3 obtained from Eqs. (12)–(18)

coincided with the reference velocities of the solution found with free frames and hence with the
rigid body equivalent velocities.

6. Summary and conclusions

In this work, the motions associated with reference systems attached to the deformable bodies
used by the floating frame of reference approach were examined. Such motions are frequently
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assumed to represent rigid body motions; however, this assumption can lead to spurious results.
The relationship between the reference motions and the rigid body motions depend on the
reference conditions used for the local axes and also on the type of shape functions employed to
describe deformation in the bodies.
The use of floating axes supported on the centre of gravity of the deformable body, a free

linkage to such a body and the modes of vibration for the free body in space substantially
simplifies the dynamic equations involved. In addition, the reference velocities coincide with the
rigid body equivalent velocities. This is strictly true for translation velocities but only approximate
for angular velocities. Expressions for calculating the rigid body velocities with all types of
reference conditions and shape functions are provided here. Such expressions rely on the
assumption that the deformable body consists of a set of infinite particles.
Rigid body equivalent velocities are extremely useful with a view to exploiting the knowledge of

the motion that bodies would have if they behaved as rigid bodies. In many cases, such motions
can be determined in a direct manner. This situation is illustrated with the problem of the throw
and flight of a javelin. As shown in Part II of this paper, the rigid body equivalent velocities are
required to calculate the kinematic coefficient of restitution for the impact of deformable bodies.
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